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Abstract: We discuss new measures in assessing the skill level of students based on their 
interactions with the Socratic homework tutor, MasteringPhysics. We show that the measurement 
of the difficulty of problems for a given student as determined by the time to first correct response, 
the number of incorrect responses without advice, and hints have high reliability (96%). As an 
immediate application, we demonstrate how item difficulty can be used to construct an item 
discrimination measure that would result in predicting the final exam score with a correlation of 
0.634.  

 
 

 
Introduction 
 
Web-based instruction offer new avenues for research in learning (Mitchell, Dipetta & Kerr 2001). In this paper we 
consider one such online tutor, namely MasteringPhysics. One of its advantages is the ability to assess learning and 
the skill of students in a particular subject through measures that are unavailable in traditional methods of instruction 
such as time on task, number of requested hints, and number of wrong answers given en route to the solution. We 
demonstrate high reliability that can be achieved using such measures, and how similar methodology may be 
extended in predicting the final exam scores of students.  
 
We are motivated by the desire: 
 
1. To identify and develop more reliable (less measurement error) measures of a student’s skill – a tool that opens up 
a vast area of future research in educational psychology. These include, but are not limited to, studies on skill 
acquisition (VanLehn 1996), epistemology (Hofer & Pintrich 1997), pedagogy (Mayer 2003), and studies of student 
learning styles such as expert-novice differences (Chi et al. 1981, Jacobson 2001).  
 
2. Develop measures to identify students who engage in intellectual dishonesty in web-based homework: This will 
help improve precision in the studies by removing such data points. 
 
3. Predict students’ performance on high stakes exams based on skill measures developed.   
 
We first discuss the pedagogy of MasteringPhysics, then introduce the measure for “difficulty” of a problem for a 
student, and show its reliability using the split-half method. We then show how the difficulty of a problem can be 
used for item discrimination analysis and the final exam score prediction.  
 
 
 
 
 



The Pedagogy of Mastering Physics 
 
The studies we report here were conducted with a web-based Socratic tutor available commercially as 
MasteringPhysics from Addison Wesley1. The pedagogy of MasteringPhysics is based on mastery learning (Bloom 
1981) in which the time on task is increased, and feedback supplied, for each student until over 90% of the students 
can solve the problem. This is the reverse of most in-school instruction where the time is fixed and only the most 
skillful students master the material at this level. Mastery learning is implemented within a Socratic dialogue where 
students are provided with hints and simpler sub-problems upon request, and are given specific criticism (feedback) 
when incorrect answers are proposed. The hints and sub-problems are designed to impart declarative and procedural 
knowledge, respectively. In addition, follow-up comments or questions are frequently given to highlight important 
features or implications of an answer that has just been obtained. The follow-ups are designed to foster active 
engagement of the student (Redish, Saul, & Steinberg 1997; Sokoloff & Thornton 1997). If the students exhaust the 
available hints they can request the solution to a problem or a sub-problem. The homework score is based on the 
percentage of correct solutions obtained less a small penalty for making wrong answers or requesting hints (this 
discourages guessing and encourages the students to figure it out for themselves).  
 
 
The absolute difficulty algorithm 
 
The data for the study we report here comes from a class of ~340 students taking the “Introductory Newtonian 
Mechanics” course at the Massachusetts Institute of Technology (MIT) in fall 2003. The students were assigned 
weekly homework in MasteringPhysics.  
 
In the course of enabling over 90% of the students to solve each problem, the tutor compiles a log of the interactions 
with each student that contains: the time to completion of a multi-part problem (T), the number of hints requested 
(h), the number of incorrect answers given without any advice (ina) other than “try again,” the number of incorrect 
answers with advice (ia), the fraction of correct answers given on first attempt to a multi-part problem (cft), and the 
number of solutions requested (s). Time to completion is defined as the time interval between first opening the 
problem and submitting the problem without accounting for any events in between.  
 
With ~94% of the students eventually getting the correct solution, the usual assessment criterion (“Is the answer 
correct?”) does not adequately assess the students.  It turns out that a much better (and more reliable) assessment is 
available by looking at the process of solution, and in particular at those interactions that indicate that students are 
experiencing difficulty in obtaining the solution. Our goal was to devise a difficulty measuring algorithm for a given 
problem by a given student. We optimized the reliability of this algorithm using the split-half method. For this 
purpose we chose 64 problems on various assignments given throughout the semester and divided them into two sets 
of 32 (called “even” and “odd”) with one problem on a given conceptual domain in each. We compute average 
difficulty (D) of a given set (even or odd) for a student as a linear combination of the average values of T, ina, and h. 
We find that a simple difficulty algorithm such as, 
 

D = T + ina + h    (1) 
 

gives a correlation of 0.85 between the average difficulty of even and odd problems yielding a split-half reliability of 
92% using the Spearman-Brown formula. It should be noted that larger values of T, ina, and h indicates a greater 
difficulty for a student on a given problem. This reliability can be improved (to 93%) by considering time for the 
first correct response (t) instead of time to completion (T). It should be mentioned that t and T are the natural 
logarithms of the time to first correct response (measured in minutes) and time to completion (measured in minutes), 
respectively. Furthermore, we are simply finding the values of the variables for a given student and are not 
interested in the relative standing of the student with respect to the rest of the class for a variable of interest; hence 
our use of the word “absolute” difficulty.  
 

                                                
1 David Pritchard founded the Effective Educational Technologies which makes MasteringPhysics with his son, and their family has a controlling 
interest in the company. Some of the IP for this company is licensed from MIT where it was developed under his direction. 



Maximizing the reliability is achieved by maximizing the correlation of the average difficulty between the even and 
the odd problems. We look for a weighted sum of the three variables given above in the form, 
 

D = α* t + β* ina + h,   (2) 
 
where, α and β are the weights to be determined and the weight of h is fixed at 1. It should be noted that the average 
difficulty of both the even and the odd sets of problems is determined by (2). Therefore, the question of maximizing 
the correlation is a unique problem that cannot be handled by multiple-regression since D is unknown and is 
determined by the three predictors (t, ina, and h). In other words, α and β has to be determined simultaneously for 
the average difficulty on even and odd sets. We address this problem along the lines of Breiman and Friedman 
(1985) by minimizing 
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with respect to α and β, which corresponds to maximizing the correlation (r) between the even and odd average 
difficulties, and hence the reliability. In (3), the sum is over students and N is the number of students. This procedure 
yields the algorithm, 
 

D = 0.025*t + 0.248*ina + h,   (4) 
 
 
with a correlation of 0.897 and a reliability of 94%. Thus, 80% of the variance (which is the correlation squared) is 
explained by the resulting regression line. This should be contrasted with our observation that a similar split-half 
study for problems in the paper-based final exam only accounts for about 40% of the variance (Pritchard & Morote 
2002). Thus, the derived measure of difficulty, D, using MasteringPhysics data reduces the error variance by about a 
factor of two. The reliability can be further improved, up to 96% by removing the regression outliers (Figure 1) 
according to Rousseeuw and van Zomeren (1990).                                                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Correlation of average difficulty between two sets (even and odd) 
problems containing 32 problems each. A point corresponds to a single student. The 
average difficulty is calculated using 0.025*t + 0.248*ina + h and removing the 
regression outliers. 
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Final exam score prediction 
 
We can extend the model development to predict the final exam score of students. We initially considered the 
variable T (time to completion), h (hints), ia (incorrect with advice), ina (incorrect not receiving advice), (1-cft) 
where cft is the fraction (or probability) of correct responses on the first attempt, and s (solutions requested) as the 
predictor variables of the final exam score. However, we find that (1-cft) is highly correlated with other predictors 
and leads to high (~10) variance inflation factors (VIFs). The VIFs are a measure of the inter-correlations among the 
predictors (Montgomery, Peck & Vining, 2001). This is understandable since not being able to respond correctly on 
the first attempt leads to requesting hints, and thereby taking longer time in completing a given problem. Also, ina is 
directly related to (1-cft). For these reasons we eliminated the variables (1-cft) and ina as predictors for the final. The 
remaining four predictors result in a correlation of 0.288 with the final exam score.  
 
We must emphasize that the above correlation was achieved after removing the outliers as determined by using 
minimum generalized variance (Wilcox, 2003). For example, before removing the outliers, the correlation between 
the final exam score and T is positive; i.e. the more time students spent on the MasteringPhysics problems the better 
they did on the final exam. This is certainly feasible if learning is taking place in the tutor, but a closer look reveals 
that the reason for the positive slope of the regression line is the presence of students who were completing 
MasteringPhysics problems (a total of 219 problems during the semester) with an anomalously short time < 2.5 
minutes (Warnakulasooriya & Pritchard, 2005), yet scoring well below the average on the final. The result is that the 
regression line is “dragged down” by low final scores at low values of T, thereby giving a positive slope. However, 
removing these outliers result in a negative correlation, which corresponds to the expected behavior on average. 
 
Furthermore, we find that the fraction of problems completed in less than 2.5 minutes (pfr) is well correlated           
(r = -0.37) with the final exam score. The more problems students completed in less time the lower they scored in 
the final exam. This suggests either academic dishonesty and/or disinterest in the course. Such students were again 
removed as identified by using minimum generalized variance. The resulting model having the predictors T, h, ia, s, 
and pfr correlate with the final exam score at 0.514. The resulting algorithm where the final is predicted on a scale 
from 0 to 1 is, 
 
Predicted final score = – 0.394*T – 0.228*h – 0.078*ia – 0.062*s – 0.472*pfr + 0.991. 
 
 
The alternating conditional expectation algorithm (Breiman & Friedman, 1985) followed by Box-Cox 
transformations suggest (Box & Cox, 1964) that (T) -2.2 and (pfr) 2.3 should improve the correlation (the 
transformations were applied only to T and pfr since they are sufficiently monotonic). This is indeed the case - the 
correlation is improved from 0.514 to 0.585. 
 
We next consider a new predictor, which we will call “disc” based on the idea of weighting each MasteringPhysics 
item by its discrimination index relative to the overall final. We define disc as, 
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where Din is the difficulty of the nth problem for the ith student as given by (4), where the sum is over the items. Λ is 
the item discrimination index of the nth problem and a is an exponent. The item discrimination index (Λ) is 
essentially a correlation coefficient found by correlating the final exam score with the item difficulty Din.  Thus, if an 
item in MasteringPhysics discriminates in favor of the more skillful versus the non-skilled student, then Λ must be 
negative; i.e. the difficulty of the item should decrease for a student who can score well on the final exam. We find 
that out of the 219 items, 59 of them do not discriminate well in the sense that students who found the item more 
difficult scored more in the final than the students who found the item less difficult. These items were discarded 
before including disc in the final prediction algorithm. 
 



Adding variable disc to the final prediction algorithm we find that the variable h has to be removed since it leads to 
high variance inflation. This is expected since h is included in the variable disc through D. Another problem 
encountered was the “wrong sign problem” for ia: that is, although ia is negatively correlated with the final in 
simple regression, it is positively correlated in multiple regression. This probably indicates a yet unknown variable 
that must be accounted for in the model. Thus, our final model only includes the “effective” predictors T, s, pfr, and 
disc. We note that disc further contain the predictors t, ina, and h in the form of D. The final exam prediction 
algorithm (on a scale from 0 to 1) is then, 
 
Predicted final score = 0.474*T -2.2 – 0.037*s – 0.548*pfr 2.3 – 0.409*disca=2 + 0.632. 
 
It is noted that the highest correlation is obtained for the exponent a = 2 (to the nearest integer) of the predictor disc. 
This algorithm results in a correlation of 0.634 with the final exam showing that it can account for 40% of the total 
variance. The standard error of the estimate is 0.161. Furthermore, the 95% confidence interval for the correlation is 
found by the method of bootstrap (Efron & Tibshirani, 1993; Wilcox & Muska, 2001) which gives (0.522, 0.695). 
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Figure 2: Predicted versus the actual final exam score using the algorithm:  
0.474*T -2.2 – 0.037*s – 0.548*pfr 2.3 – 0.409*disca=2 + 0.632. 

 
 
It may be argued that the use of the final exam score to calculate item discrimination indices (Λ) is circular since our 
objective itself is to predict the final exam score. However, the penalty we had to pay for using the final score as 
such is that we had to discard 59 problems. This may also indicate the mismatch between the final exam and the 
MasteringPhysics problems to some extent. We have investigated a method which would address the above 
objection by calculating item discrimination indices based on the average difficulty rather than the final score. This 
gives us an algorithm which has a correlation of 0.592 (0.485, 0.666; 95% confidence interval) with a comparable 
standard error of estimate, which is 0.168. The corresponding exponent (a) is found to be unity Thus, for the current 
data set we do not see a substantial difference between these two methods of item discrimination. 
 
 
 
 



Summary and discussion 
 
We have evidence that exceptionally high precision assessment is feasible with the data available from student 
interaction with MasteringPhysics, the web-based homework tutor. We have developed a difficulty measure (D) 
which yields a split-half reliability of over 92% (such reliabilities are generally considered as superior in standard 
educational literature). We also are capable of predicting the final exam score with a correlation over 0.5. We 
believe that our models are robust enough to have sufficient repeatability since we have accounted for the outliers 
and the variables which will lead to unreliable regression coefficients. We will report on the performance of the 
above algorithms for students in other classes in the future. 
 
In the present study we have eliminated all the outliers as identified by the minimum generalized variance method. 
However, we may keep certain “outliers” considering a variety of other factors, which we have not done in this 
study. However, we do not believe that this will affect our conclusions in any drastic manner.  
 
Also, we may be able to use a criterion other than 2.5 minutes to identify students who did not perform well in the 
final compared to the time they took to complete problems on average. Such a criterion might be the fraction of 
problems done in less than 1/3 of the average time of the problems of interest. We already have data that suggests 
that this may be a better identifier of such students, the results of which we will report with other improvements to 
the current algorithms.  
 
Our ability to predict the final exam score using MasteringPhysics data is a measure of our ability to assess the skill 
of a student on an equivalent scale on the given subject matter. Since such an assessment is made over the course of 
the semester over several hundreds of problems with many variables that directly correlate with the student’s skill, it 
gives us a better way to deal fairly with students’ actual skill. This eliminates the high stakes nature of a final exam. 
Given such assessment capabilities, teachers could confidently determine students’ skill without worrying about the 
one who miraculously passed, deserved to pass, or failed, just because of some “bad luck” (Pritchard & Morote, 
2002). 
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