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Problems using typical numbers for sports equipment parameters such as:  “A 0.285 kg 

tennis racket strikes a 0.058 kg tennis ball…” are common in introductory physics.  The 

numbers are usually reasonable, but presenting only one set of representative numbers 

can often overlook interesting features of the real world.  Continuing with the example 

above, tennis ball masses are tightly constrained by the International Tennis Federation 

(ITF) to range between 56.0 g and 59.4 g, but the rules do not restrict the mass of tennis 

rackets
1
.  Instead, physics plays a role in fixing the preferred tennis racket mass.  In this 

article, we give an example of how internet research using the readily available 

commercial websites of sports equipment manufacturers can enrich introductory physics 

problems and spark interesting follow-up questions. 

 
Fig. 1:  A typical 1970’s wooden racket and a typical modern composite racket 

(photo by Chris Pawl). 

 

Tennis rackets have undergone a major evolution in the past 30 years.  Until the early 

1980s most players used wooden rackets which were constrained by structural limitations 

to weigh about 14 oz (or about 7 times the weight of the 2 oz ball).  By the mid 1980s, 

however, carbon fiber and fiberglass rackets, which could be made larger, stronger, and 

lighter than wooden rackets, had come to dominate the game (Fig. 1).  Since that time, 

racket manufacturers have competed to market lighter rackets.  Fig. 2 is a histogram of 

the adult racket types marketed by five major racket manufacturers constructed using data 

obtained from their commercial websites.  The histogram clearly shows that the days of 

14 oz rackets are over, but interestingly, it also displays a sharp cutoff at racket masses 

less than about four times the ball’s mass.  In this article, we use basic collision analysis 

to explore the implications of this cutoff.  The problem is a rich one, yielding 



unexpectedly simple results, but also suggesting a wide range of possible complications 

for further exploration. 
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Fig.2:  Histogram of adult tennis racket types marketed by five major 

manufacturers (Prince, Wilson, Head, Babolat and Yonex). 

 

It is possible for introductory physics students to analyze the data of Fig. 2 in a simple but 

powerful fashion.  We will ignore the complications implied by the fact that the racket is 

actually pivoted rather than translated and that it may not contact the ball at its center of 

mass (see e.g. Refs. 2 and 3 for a more detailed analysis).  We will begin by using the 

simplest possible model of the tennis stroke: a one-dimensional elastic collision between 

two point masses.  It will prove useful to define the basic element of our analysis to be 

the shot speed vshot that a particular player can give to a ball that is struck at rest.  A basic 

elastic collision analysis leads to the following formula for vshot in terms of vswing, the 

speed of the player’s racket before impact with the ball: 
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where m is the ball’s mass and M is the racket’s mass.  This shot speed is a useful 

quantity because people tend to play against competitors of about their own ability.  

Thus, we propose the following hypothesis:  a useful tennis racket should have a mass 

that allows a player to handle a shot hit by an opponent of the same ability. 

 

We will now attempt to use the data of Fig. 2 to explore what is meant by “handle”.  We 

will focus on racket recoil.  Racket recoil is very much dependent on racket mass.  For 

example, a racket with M = m is clearly unacceptable in our simple model, since a 

collision with a moving ball during play would cause the racket to recoil backward with 

the speed of the incoming ball.  This suggests a first definition of “handle”.  We will 

begin with the definition:  a racket has “handled” a shot if it swings through the collision 

without recoiling.  Suppose a player strikes a ball that is approaching their racket with a 

nonzero initial speed.  If the player swings the racket with their typical speed vswing, 



another elastic collision analysis can be made to determine the value of the ball’s velocity 

before the collision (vball) that will completely stop the racket (the racket’s final speed is 

zero).  The requisite ball velocity (vstop) satisfies: 
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We can now test our hypothesis of equal opponents with our initial definition of “handle” 

by assuming that the player’s racket should be capable of swinging through a collision 

with a ball which is incident at the player’s own shot speed (vshot) without tending to 

recoil in the opposite direction.  By setting Eq. (1) equal to Eq. (2), we find that the 

minimum acceptable mass ratio is M/m = 4.24.  Fig. 3 illustrates the dependence of vstop 

on the mass ratio (M/m = 4.24 is the point at which this curve has a value of 1).  The 

agreement between our approach and the histogram of racket masses is excellent.  In fact, 

the agreement is so good that it makes sense to check the predictions of this approach for 

another sport. 
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Fig 3: The ratio of the initial ball speed required to stop a player’s swinging racket 

to the player’s typical shot speed when hitting a ball at rest.   

 

Baseball and softball provide a reasonable test of the predictions of our approach.  

Advances in technology have allowed bat manufacturers to market lighter bats in a 

manner analogous to the evolution of tennis rackets.  Histograms of commercial non-

wood baseball and softball bat masses are shown in Figs. 4 and 5.  Interestingly, adult 

baseball and softball bats show substantial deviation from the limit M/m > 4.24.  Thus, 

we must conclude either that our hypothesis of equal opponents, our definition of 

“handling” a hit, or the model itself is in error.  Many reasons for any (or all) of these 

options might be considered.  We suggest three possibilities here.  (Note that we have 

already used the lower limit on the ball masses in creating Figs. 4 and 5 so that any bias is 

in our favor.) 
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Fig. 4:  Histogram of adult non-wood baseball bat types marketed by five major 

manufacturers (deMarini, Easton, Louisville Slugger, Worth and Rawlings).  The 

peak at M/m ~ 5.75 is a result of high school and NCAA rules limiting the length – 

mass differential of legal bats (an interesting example of subtracting two quantities 

with different units). 
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Fig. 5:  Histogram of adult softball bat types marketed by five major manufacturers 

(deMarini, Easton, Louisville Slugger, Worth and Mizuno).  

 

First, it might be supposed that our hypothesis of equal opponents is not relevant to 

baseball and softball.  Perhaps the pitcher throws the ball with a speed substantially less 

than that with which the ball leaves the bat when struck at rest.  Some research into 

typical numbers, however, shows that the assumption that players must be ready to 

handle vball ~ vshot is reasonable for both baseball
4
 and fast-pitch softball.  

 

Second, it might be that the model of a one-dimensional collision is in error because 

rotational effects play a larger role in the bat-ball collision than they do the racket-ball 

collision.  A significant literature exists addressing the nuances of the baseball-bat 

collision
5,6

.  Advanced students could be invited to investigate these details. 



We will focus in this article on a third possibility, suitable for analysis in an introductory 

class.  The official rules of tennis
1
, NCAA baseball

7
 and NCAA softball

8
 each place 

limits on the coefficient of restitution (COR) of legal balls.  The allowed ranges are 0.73-

0.76, 0.555 (max) and 0.47 (max) respectively.  These coefficients are specified with 

respect to impacts with surfaces rather than the racket or bat.  (Existing literature suggests 

a range of possible COR values of 0.6-0.9 for the tennis ball-racket collision
2,9

 and of 

0.45-0.6 for the baseball-bat collision
4,10

.)  A COR less than 1.0 implies that the collision 

is not perfectly elastic.  To allow for a COR, we must adjust our model by replacing the 

elastic collision requirement that kinetic energy be conserved with the constraint 

equation: 

 

     

 

where e is the COR and the subscripts “i” and “f” denote the before-collision values and 

the after-collision values respectively.  This modification alters the form of Eqs. (1) and 

(2).  They are replaced by: 
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Fig. 6:  The mass ratio such that a ball incident with the player’s shot speed (as 

defined by Eq. (1’)) will bring the player’s racket to rest during the collision as a 

function of the coefficient of restitution.  
 

Fig. 6 plots the value of the ratio M/m which results in vshot = |vstop| as a function of the 

COR.  This plot shows that accounting for the COR can explain the most prominent trend 

in the lower cutoff of M/m values observed in the sequence of Figs. 2, 4 and 5.  Because 

softballs have a substantially lower COR than tennis balls, players are willing to use bats 

with M/m significantly lower than that of tennis rackets.  Fig. 6 brings up new questions 

as well.  By our initial definition, all three sports now exhibit a racket or bat mass 

)3()( fswing,fball,iball,iswing, vvvve −=−



cushion. The major manufacturers studied here do not market rackets or bats to adults 

that are light enough to reach the limit vshot = |vstop|.  This leads us to re-examine our 

definition of what it means to “handle” a shot.   

 

A possible redefinition that builds on what we have done is to assume that a player’s 

racket should retain some nonzero fraction of the swing speed after the collision.  If we 

continue to realize our hypothesis by assuming that the ball impacts the racket with the 

same speed as the player’s shot speed from rest (i.e. we assume |vball| = vshot as defined in 

Eq. (1’)), the racket’s retained speed, vretained, is given by: 

 

)4(.
)(

)3(
swing2

222

retained v
mM

emMmeeM
v

+

−+−
=  

 

Fig. 7 plots the value of the ratio M/m required to retain a certain fraction of the swing 

speed as a function of the COR.  Looking at this plot shows that our simple approach 

gives a good description of the relative mass cutoffs if we assume that the retained swing 

speed is around 15-20%.  For example, to retain 16% of the swing speed, Eq. (4) suggests 

M/m > 4.0, 3.0 and 2.5 for COR values of 0.75, 0.55 and 0.45, respectively.  
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Fig 7:  Curves showing M/m ratio required to retain 10% (red, bottom) through 

40% (purple, top) of the initial swing speed in steps of 10% as a function of the 

coefficient of restitution. 

 

Our approach has now reached what seems to be a reasonable description of the observed 

cutoffs, and in the process we have refined our definition of “handling” a shot to state 

that a minimum of about 15-20% of the racket or bat speed should be retained after the 

collision.  Students might be interested in further investigation.  One possible follow-up 

project is to collect data on the rackets and bats that are marketed for youth and compare 



their M/m values to the range found for adult equipment.  Another is to investigate sports 

such as golf, where the ball is at rest before contact.  Advanced students could examine 

the impact of rotational effects, construct experiments to test the model, or explore the 

literature devoted to predicting the optimal bat mass from analysis of swing speed
11

. 

 

In this article we have described how gathering a statistically sizeable data sample from 

the internet can enrich a typical introductory physics problem.  In this case, the data can 

be used to illustrate steps in the development of a theoretical model.  The analysis of the 

data also suggests follow-up projects that are at a reasonable level for introductory 

physics.  For more advanced students, a project like the one described can serve as a 

springboard to a literature review.  A freely-available problem based on the material 

presented here along with other examples of using data to enrich standard physics 

problems can be found at our website
12

. 
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